Calculer les coordonnées d'un vecteur
Episode 2
🔑 Pour suivre cet épisode tu dois :
avoir regardé l'épisode 1 ;
avoir cherché sur papier l'exercice de la fin de l'épisode.
📝 Résumé de l'épisode :
Nous donnons les solutions détaillées de l'exercice d'entraînement qui a terminé l'épisode 1.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{3}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Voici la formule qui permet de calculer les coordonnées de $\overrightarrow{\mathrm{FT}}$
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{3}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Appliquons cette formule.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=hl,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=hl,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=hl,id=e1}{3}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Le nombre $x_\mathrm{T}$ est l'abscisse du point $\mathrm{T}$, c'est $3$.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=hl,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=hl,id=e2}{-}\htmlData{state=off,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
moins ...
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=hl,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Le nombre $x_\mathrm{F}$ est l'abscisse du point $\mathrm{F}$, c'est $2$.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=hl,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=hl,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=hl,id=e4}{7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Le nombre $y_\mathrm{T}$ est l'ordonnée du point $\mathrm{T}$, c'est $7$.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=hl,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=hl,id=e5}{-}\htmlData{state=off,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
moins ...
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=hl,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
Le nombre $y_\mathrm{F}$ est l'ordonnée du point $\mathrm{F}$, c'est $-7$.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=off,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
On effectue les calculs.
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=hl,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=hl,id=e9}{1}\\ \htmlData{state=off,id=e8}{14} \end{pmatrix}$
$3-2=1$
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=hl,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{1}\\ \htmlData{state=hl,id=e8}{14} \end{pmatrix}$
$7-\left(-7\right)=7+7=14$
1. $\overrightarrow{\mathrm{FT}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{2} ;\htmlData{state=on,id=e6}{-7}\right)$ et $\mathrm{T}\left(\htmlData{state=on,id=e1}{3} ; \htmlData{state=on,id=e4}{7}\right)$.
$\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{T}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{T}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{3}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{2}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-7)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FT}}\begin{pmatrix} \htmlData{state=on,id=e9}{1}\\ \htmlData{state=on,id=e8}{14} \end{pmatrix}$
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Voici la formule qui permet de calculer les coordonnées de $\overrightarrow{\mathrm{PE}}$
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Appliquons cette formule.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=hl,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=hl,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=hl,id=e1}{4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Le nombre $x_\mathrm{E}$ est l'abscisse du point $\mathrm{E}$, c'est $4$.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=hl,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=hl,id=e2}{-}\htmlData{state=off,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
moins ...
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=hl,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Le nombre $x_\mathrm{P}$ est l'abscisse du point $\mathrm{P}$, c'est $9$.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=hl,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=hl,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=hl,id=e4}{1}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Le nombre $y_\mathrm{E}$ est l'ordonnée du point $\mathrm{E}$, c'est $1$.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=hl,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=hl,id=e5}{-}\htmlData{state=off,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
moins ...
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=hl,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
Le nombre $y_\mathrm{P}$ est l'ordonnée du point $\mathrm{P}$, c'est $-5$.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=off,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
On effectue les calculs.
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=hl,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=hl,id=e9}{-5}\\ \htmlData{state=off,id=e8}{6} \end{pmatrix}$
$4-9=-5$
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=hl,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{-5}\\ \htmlData{state=hl,id=e8}{6} \end{pmatrix}$
$1-\left(-5\right)=1+5=6$
2. $\overrightarrow{\mathrm{PE}}$ avec $\mathrm{P}\left(\htmlData{state=on,id=e3}{9} ;\htmlData{state=on,id=e6}{-5}\right)$ et $\mathrm{E}\left(\htmlData{state=on,id=e1}{4} ; \htmlData{state=on,id=e4}{1}\right)$.
$\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{E}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{P}}\\ \htmlData{state=on,id=e4}{y_\mathrm{E}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{P}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{9}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{1}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-5)}} \end{pmatrix}$ $\overrightarrow{\mathrm{PE}}\begin{pmatrix} \htmlData{state=on,id=e9}{-5}\\ \htmlData{state=on,id=e8}{6} \end{pmatrix}$
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{-2}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Voici la formule qui permet de calculer les coordonnées de $\overrightarrow{\mathrm{ED}}$
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{-2}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Appliquons cette formule.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=hl,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=hl,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=hl,id=e1}{-2}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Le nombre $x_\mathrm{D}$ est l'abscisse du point $\mathrm{D}$, c'est $-2$.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=hl,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=hl,id=e2}{-}\htmlData{state=off,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
moins ...
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=hl,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Le nombre $x_\mathrm{E}$ est l'abscisse du point $\mathrm{E}$, c'est $-8$.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=hl,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=hl,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=hl,id=e4}{2}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Le nombre $y_\mathrm{D}$ est l'ordonnée du point $\mathrm{D}$, c'est $2$.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=hl,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=hl,id=e5}{-}\htmlData{state=off,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
moins ...
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=hl,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
Le nombre $y_\mathrm{E}$ est l'ordonnée du point $\mathrm{E}$, c'est $6$.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=off,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
On effectue les calculs.
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=hl,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=hl,id=e9}{6}\\ \htmlData{state=off,id=e8}{-4} \end{pmatrix}$
$-2-\left(-8\right)=-2+8=6$
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=hl,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{6}\\ \htmlData{state=hl,id=e8}{-4} \end{pmatrix}$
$2-6=-4$
3. $\overrightarrow{\mathrm{ED}}$ avec $\mathrm{E}\left(\htmlData{state=on,id=e3}{-8} ;\htmlData{state=on,id=e6}{6}\right)$ et $\mathrm{D}\left(\htmlData{state=on,id=e1}{-2} ; \htmlData{state=on,id=e4}{2}\right)$.
$\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{D}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{E}}\\ \htmlData{state=on,id=e4}{y_\mathrm{D}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{E}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-2}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-8)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{2}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{6}} \end{pmatrix}$ $\overrightarrow{\mathrm{ED}}\begin{pmatrix} \htmlData{state=on,id=e9}{6}\\ \htmlData{state=on,id=e8}{-4} \end{pmatrix}$
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{1}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Voici la formule qui permet de calculer les coordonnées de $\overrightarrow{\mathrm{FP}}$
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{1}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Appliquons cette formule.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=hl,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=hl,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=hl,id=e1}{1}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Le nombre $x_\mathrm{P}$ est l'abscisse du point $\mathrm{P}$, c'est $1$.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=hl,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=hl,id=e2}{-}\htmlData{state=off,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
moins ...
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=hl,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Le nombre $x_\mathrm{F}$ est l'abscisse du point $\mathrm{F}$, c'est $-7$.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=hl,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=hl,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=hl,id=e4}{-7}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Le nombre $y_\mathrm{P}$ est l'ordonnée du point $\mathrm{P}$, c'est $-7$.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=hl,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=hl,id=e5}{-}\htmlData{state=off,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
moins ...
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=hl,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
Le nombre $y_\mathrm{F}$ est l'ordonnée du point $\mathrm{F}$, c'est $-8$.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=off,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
On effectue les calculs.
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=hl,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=hl,id=e9}{8}\\ \htmlData{state=off,id=e8}{1} \end{pmatrix}$
$1-\left(-7\right)=1+7=8$
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=hl,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{8}\\ \htmlData{state=hl,id=e8}{1} \end{pmatrix}$
$-7-\left(-8\right)=-7+8=1$
4. $\overrightarrow{\mathrm{FP}}$ avec $\mathrm{F}\left(\htmlData{state=on,id=e3}{-7} ;\htmlData{state=on,id=e6}{-8}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{1} ; \htmlData{state=on,id=e4}{-7}\right)$.
$\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{F}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{F}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{1}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-7)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{-7}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{(-8)}} \end{pmatrix}$ $\overrightarrow{\mathrm{FP}}\begin{pmatrix} \htmlData{state=on,id=e9}{8}\\ \htmlData{state=on,id=e8}{1} \end{pmatrix}$
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{-4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Voici la formule qui permet de calculer les coordonnées de $\overrightarrow{\mathrm{CP}}$
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=off,id=e1}{-4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Appliquons cette formule.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=hl,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=hl,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=hl,id=e1}{-4}\htmlData{state=off,id=e2}{-}\htmlData{state=off,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Le nombre $x_\mathrm{P}$ est l'abscisse du point $\mathrm{P}$, c'est $-4$.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=hl,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=hl,id=e2}{-}\htmlData{state=off,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
moins ...
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=hl,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=hl,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=off,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Le nombre $x_\mathrm{C}$ est l'abscisse du point $\mathrm{C}$, c'est $-2$.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=hl,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=hl,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=hl,id=e4}{5}\htmlData{state=off,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Le nombre $y_\mathrm{P}$ est l'ordonnée du point $\mathrm{P}$, c'est $5$.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=hl,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=hl,id=e5}{-}\htmlData{state=off,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
moins ...
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=hl,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=on,id=e5}{-}\htmlData{state=hl,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
Le nombre $y_\mathrm{C}$ est l'ordonnée du point $\mathrm{C}$, c'est $5$.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=off,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
On effectue les calculs.
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=hl,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=hl,id=e9}{-2}\\ \htmlData{state=off,id=e8}{0} \end{pmatrix}$
$-4-\left(-2\right)=-4+2=-2$
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=hl,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{-2}\\ \htmlData{state=hl,id=e8}{0} \end{pmatrix}$
$5-5=0$
5. $\overrightarrow{\mathrm{CP}}$ avec $\mathrm{C}\left(\htmlData{state=on,id=e3}{-2} ;\htmlData{state=on,id=e6}{5}\right)$ et $\mathrm{P}\left(\htmlData{state=on,id=e1}{-4} ; \htmlData{state=on,id=e4}{5}\right)$.
$\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e1}{x_\mathrm{P}}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{x_\mathrm{C}}\\ \htmlData{state=on,id=e4}{y_\mathrm{P}}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{y_\mathrm{C}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{\htmlData{state=on,id=e1}{-4}\htmlData{state=on,id=e2}{-}\htmlData{state=on,id=e3}{(-2)}}\\ \htmlData{state=on,id=e8}{\htmlData{state=on,id=e4}{5}\htmlData{state=on,id=e5}{-}\htmlData{state=on,id=e6}{5}} \end{pmatrix}$ $\overrightarrow{\mathrm{CP}}\begin{pmatrix} \htmlData{state=on,id=e9}{-2}\\ \htmlData{state=on,id=e8}{0} \end{pmatrix}$
Corrigé de l'exercice de l'épisode 1